Чему равна допустимая жесткость работы дизельного двигателя
СРЕДНЕЕ ИНДИКАТОРНОЕ ДАВЛЕНИЕ
Во время перемещения поршня давление газов в цилиндре изменяется. Сила давления газов на поршень в связи с этим также является величиной переменной. Работа, как мы знаем, равна произведению силы да путь (перемещение). Таким образом, работа газов за рабочий цикл может быть подсчитана как сумма произведений давления в цилиндре на каждом маленьком участке (где это давление можно принять постоянным) на перемещение поршня на этом участке. Эта сумма соответствует площади индикаторной диаграммы. Таким образом, площадь диаграммы, очерченная линией 3—4—5—3 (см. рис. 25), выражает полезную работу газов, которую они совершают в цилиндре за один рабочий цикл. Однако оценивать работу цикла по площади индикаторной диаграммы во многих случаях неудобно. Поэтому введено понятие среднего индикаторного давления. Условно приняли, что величина этого давления не изменяется, т. е. является постоянной (рис. 29) в течение ходапоршня.
Рис. 29. Определение среднего индикаторного давления
Тогда графически среднее индикаторное давление представляет собой высоту заштрихованного прямоугольника, площадь которого равна площади индикаторной диаграммы, а основание равно длине диаграммы. Средним индикаторным давлением называют условное, постоянное по величине давление, при котором работа за один цикл равна работе газов в цилиндре. В тепловозных дизелях среднее индикаторное давление pi находится в пределах 0,58—1,76 МПа (6—18 кгс/см2). Прежде чем перейти к подсчету работы и мощности дизеля, выясним, что такое энергия.
ПОНЯТИЕ ОБ ЭНЕРГИИ
Слово энергия происходит от греческого слова energia, что значит действие, деятельность. Различают энергию кинетическую и потенциальную. Кинетической энергией обладает любое движущееся тело: поезд, вода, ветер, пуля. Потенциальной, или скрытой, энергией обладает тело, находящееся на высоте. Поднимем, например, боек молота на некоторую высоту и будем удерживать его в этом положении посторонней силой. На поднятие бойка нам пришлось затратить работу, которую нетрудно подсчитать, если его массу умножить на высоту подъема. Пока боек поднят, он обладает запасом потенциальной энергии, накопленной по мере того, как его поднимали. Если теперь отпустить боек, то во время падения потенциальная энергия переходит в кинетическую (энергию движения). Исчезнуть энергия не может: она только переходит из одного вида в другой. Это утверждение основано на известном законе сохранения энергии. На первый взгляд кажется, что когда, например, катящийся с горки вагон останавливается, то запас его кинетической энергии куда-то «исчезает». На самом деле кинетическая энергия переходит в тепловую при трении деталей тормозных устройств. Мы не замечаем этого потому, что нагревание окружающей среды незначительно. Зато мы можем увидеть покраснение тормозных колодок при резком торможении поезда.
Каждый вид энергии может переходить в другой, причем определенное количество «исчезнувшей» энергии одного вида даст эквивалентное (равноценное) ему количество энергии другого вида. Иными словами, каждая единица теплоты может дать строго определенное количество работы, и, наоборот, каждая единица работы может дать определенное количество теплоты.
При работе двигателя внутреннего сгорания каждый килограмм жидкого топлива при сгорании выделяет определенное количество теплоты. Тепловой эффект любого вида топлива, в частности дизельного, характеризуется теплотой сгорания, т. е. тем количеством теплоты, которое выделяется при полном сгорании 1 кг данного топлива.
Чем же измеряется теплота сгорания топлива? Количество теплоты измеряют в джоулях подобно тому, как сила измеряется в ньютонах, а длина — в метрах. Установлено, что 1 кг дизельного топлива при полном сгорании способен выделить тепла до 42 500 кДж (10 151 ккал). Сходство между теплотой и работой в том, что они подобны. Это вытекает из одного из основных законов термодинамики— науке о превращении теплоты и работы друг в друга.
ПОДСЧЕТ РАБОТЫ И МОЩНОСТИ ДИЗЕЛЯ
Работа поршня определяется произведением силы, действующей на поршень, на пройденный путь. Перемещения поршня ограничиваются его крайними положениями. Как упоминалось выше, ход поршня и диаметр цилиндра — величины, весьма важные для дизеля. Если площадь поршня умножить на среднее индикаторное давление, то получим среднюю силу, приложенную к поршню. Если теперь эту силу умножить на расстояние, проходимое поршнем от верхней до нижней мертвой точки, то найдем работу, которую совершают газы, действующие на поршень, за один ход в одном цилиндре.
Поясним это примером. Пусть среднее индикаторное давление равно 0,98 МПа (10 кгс/см2) , а площадь поршня 0,08 м2 (800 см2) . Тогда сила, действующая на поршень такого дизеля, составит 0,98 X 0,08 = 78,4 кН = 78 400 Н (или 800X10 = 8000 кгс).
Пусть ход поршня равен 330 мм, или 0,33 м (дизели типа Д50). Работа, которую произведет газ при движении поршня из верхней мертвой точки к нижней, будет равна произведению силы на величину перемещения, т. е. на ход поршня: 78400X0,33 = 25 872 Н-м (или 8000X0,33 = 2640 кгс-м).
Мы подсчитали работу, которую совершает газ в одном цилиндре за один рабочий ход поршня. В четырехтактном дизеле рабочий ход происходит в течение двух полных оборотов коленчатого вала. Значит, за один оборот вала в среднем совершается работа в два раза меньше, т. е.
25 872:2 = 12936Н-м, или 2640_2=1320 кгс-м.
Теперь подсчитаем мощность дизеля. Предположим, что коленчатый вал делает в минуту 750 оборотов, или 750X60 = 45 000 об/ч. Так как работа газа за один оборот вала составляет в нашем случае 12 936 Н-м, то, следовательно, за 1 ч она будет равна
12 936X45 000 = 582120 000 Н-м (т. е. 582 120 000 Дж, так как Н-м = Дж), или 1320Х X45000 = 59 400 000 кгс-м.
Мощностью называется работа, выполненная в единицу времени (в секунду). Если за 1 с будет совершена работа в 736 Н-м (75 кгс-м) , то эту мощность условно называют одной лошадиной силой (0,736 кВт, или 736 Вт = 75 кгс -м/с). Значит, работа, выполненная при мощности 736 Вт (1 л. с.) за 1 ч, будет равна 736X Х3600 = 2 649 600 Н-м (= Дж), или 75X3600 = 270 000 кгс-м.
Следовательно, индикаторная мощность в киловаттах одноцилиндрового двигателя определится, если работу в джоулях за 1 ч разделить на 3600 с: 582 120 000 : 3600 = 162 кВт, а в лошадиных силах, если величину часовой работы 59 400 000 кгс-м разделить на 270 000, т. е. 59 400 000:270 000 = 220 л. с .
Однако полезная, или эффективная, мощность, измеряемая (реализуемая) на коленчатом валу, будет меньше индикаторной, так как часть мощности расходуется на преодоление сопротивлений в трущихся частях шатунно-кривошипного механизма и на привод вспомогательных механизмов (насосы, воздуходувка и др.).
Величина этих потерь зависит от величины зазоров, качества обработки деталей, температуры и вязкости масла и в среднем для номинального режима работы может быть принята равной около 20%. Тогда для нашего случая эффективная мощность для одного цилиндра равна 162 X 0,8 = 130 кВт, пли 220X0,8= 176 л. с, а для шести цилиндров дизеля в 6 раз больше, т. е. 780 кВт, или 1056 л. с. Мощность современных тепловозных дизелей достигает 2210, 4400 кВт (3000, 6000 л. с.) в одном агрегате.
ПУТИ ПОВЫШЕНИЯ МОЩНОСТИ ДИЗЕЛЯ
Непрерывное увеличение мощности тепловозных дизелей — одно из важнейших направлений развития тепловозостроения как в нашей стране, так и за рубежом. Однако решение этой задачи значительно осложняется тем, что тепловоз является транспортной машиной, размеры которой ограничены габаритом подвижного состава, а вес — нагрузками на рельсы. Увеличение размеров цилиндра или их числа повышает вес дизеля. Поэтому осуществлять дальнейший рост мощности тепловозных дизелей только за счет этого нельзя. Практика показывает, что для V-образных дизелей число цилиндров должно быть не более 20.
Как же увеличить мощность дизеля при тех же габаритных ограничениях?
Одним из путей является применение двухтактного дизеля, у которого рабочий цикл, как указывалось выше, осуществляется за один оборот коленчатого вала. Иными словами, в двухтактном двигателе при тех же размерах и той же быстроходности совершается в единицу времени в два раза больше рабочих циклов, чем в четырехтактном. Казалось бы, что при одинаковом рабочем объеме и той же частоте вращения вала мощность двухтактного дизеля должна быть в 2 раза больше мощности четырехтактного дизеля. Однако практически она возрастает только в 1,5— 1,7 раза, так как часть мощности приходится расходовать на привод нагнетателя воздуха, необходимого для пуска и продувки цилиндров; кроме того, часть хода поршня, при котором совершается расширение газа, приходится на период, когда открываются выпускные окна (клапаны) и газы в это время почти не совершают полезной работы.
Другой путь повышения мощности — увеличение частоты вращения вала дизеля. Чем быстрее будет вращаться коленчатый вал, тем большее число рабочих циклов в единицу времени будет выполнено и тем большая работа будет произведена в единицу времени. Однако возможность увеличения частоты вращения вала дизеля ограничивается прочностью отдельных деталей его и интенсивностью их износа, который возрастает с ростом скорости движения деталей. Скорость же деталей шатунно-кривошипного механизма зависит не только от частоты вращения вала, но и от величины хода поршня, поэтому принято при определении быстроходности двигателя исходить из средней скорости поршня, которая у современных дизелей достигает 10—12 м/с. Третий путь предусматривает повышение мощности дизеля увеличением работы, выполняемой в цилиндрах двигателя в течение каждого рабочего цикла. А чтобы увеличить эту работу, надо сжечь в цилиндрах больше топлива. Но для этого потребуется больше воздуха . Весовое количество воздуха, которое может уместиться в цилиндре, возрастает с увеличением давления и понижением температуры воздуха. Повысить давление воздуха перед поступлением в цилиндры двигателя внутреннего сгорания можно с помощью наддува.
Достоинства и недостатки дизельного мотора
Теперь же следует сказать пару слов обо всех плюсах и минусах подобных конструкций. Начнем с положительных сторон. Моторы данного типа работают практически на любом горючем, поэтому к качеству последнего не предъявляются какие-либо серьезные требования, более того, с увеличением его массы и содержания атомов углерода повышается и теплотворная способность движка, а, следовательно, и его эффективность. Его КПД иногда переваливает за отметку 50%.
Автомобили с такими моторами более «отзывчивые», а все благодаря высокому значению вращающего момента на низких оборотах. Поэтому такой агрегат приветствуется на моделях спортивных машин, где нельзя не газовать от души. Кстати, именно этот фактор поспособствовал широкому распространению данного типа мотора на большие грузовые авто. Да и количество СО в составе выхлопных газов дизельных моторов значительно ниже, чем у бензиновых, что также является несомненным преимуществом. Кроме того, они намного экономичнее, да и раньше топливо стоило значительно ниже бензина, хотя на сегодняшний день их цены практически сравнялись.
Что же насчет недостатков, так они носят следующий характер. В связи с тем, что во время рабочего процесса возникает огромная механическая напряженность, детали дизельного двигателя должны быть более мощными и качественными, а, значит, и более дорогостоящими. Кроме того, это сказывается и на развиваемой мощности, причем не с самой лучшей стороны. Экологическая сторона вопроса сегодня очень важна, поэтому ради снижения выброса выхлопных газов общество готово платить за более «чистые» моторы и развивают это направление в исследовательских лабораториях.
Еще одним значительным минусом является вероятность застывания топлива в холодное время года, так что если вы живете в регионе, где преобладают довольно низкие температуры, то дизельное авто не самый лучший вариант. Выше было сказано, что к качеству горючего не предъявляются серьезные требования, однако это касается только лишь масляных примесей, а вот с механическими ситуация обстоит намного серьезней. Детали агрегата очень чувствительны к подобным добавкам, кроме того, они быстро выходят из строя, а ремонт довольно сложный и дорогостоящий.
Принцип работы и конструкция дизельного турбонагнетателя
Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:
- корпус компрессора (1);
- компрессорное колесо (2);
- вал ротора или ось (3);
- корпус турбины (4),
- турбинное колесо(5);
- корпус подшипников;
Регулировка дизелей
Под регулированием дизеля понимают комплекс таких технологических мероприятий, которые обеспечивают номинальную мощность дизельного двигателя при его экономичности и надежности.
Все цилиндры дизеля должны развивать одинаковую мощность. Если цилиндры двигателя нагружены неравномерно, то при выходе дизеля на номинальную мощность часть цилиндров оказывается перегруженной.
Перегрузка отдельных цилиндров сопровождается увеличением тепловых напряжений и температуры, которые нередко вызывают появление трещин в стенках блока, крышках цилиндров, донышка поршней, загорание поршневых колец в канавках поршня, обгорание тарелок клапанов и сопловых наконечников распылителей форсунок, вибрацию дизеля. Перегрузка одних цилиндров и недогрузка других недопустима.
Как правило регулировка дизеля проводится с применением штатных измерительных приборов, входящих в комплект поставки дизеля: механического индикатора, максиметра и термомопар или термометров.
В зависимости от типа дизеля мощность в цилиндре измеряется или оценивается различными методами:
✔ на малооборотных дизелях, оборудованных индикаторными приводами, мощность в цилиндре измеряют по индикаторной диаграмме, получаемой при помощи механического индикатора.
✔ на остальных дизелях, оборудованных индикаторными кранами, о равномерности нагрузки по цилиндрам судят по максимальному давлению цикла Pz и температуре выпускных газов при помощи максиметра и штатных термопар. Мощность цилиндра не измеряется, а оценивается при помощи косвенных параметров.
✔ на дизелях без индикаторных кранов – нет штатных приборов, позволяющих оценить нагрузку по цилиндрам.
Применение в качестве штатного или технологического средства контроля переносного комплекса для регулировки цилиндровой мощности дизеля, выпускаемого нашим предприятием, позволяет в любой момент индицировать дизель в процессе проведения регулировочно-наладочных работ и испытаний.
Комплекс обеспечивает:
- контроль теплотехнических параметров дизеля;
- оценку качества и диагностику неисправностей рабочего процесса дизеля;
- регулировку цилиндровой мощности дизеля;
Комплекс отображает на экране монитора:
- развернутые индикаторные диаграммы выбранных цилиндров (до 8 одновременно, Рис.1) ;
- сохраненные в архиве данные по всем измерениям;
В результате обработки полученных индикаторных диаграмм определяются:
- максимальное давление сгорания – Pz (МПа);
- индикаторное давление – Pi (МПа);
- индикаторная мощность – Ni (кВт);
- частота вращения коленчатого вала – n (об/мин);
Рис. 1 Индикаторная диаграмма отображаемая на экране комплекса.
Основную информацию комплекс получает от высокотемпературного датчика давления газа серии ДДГ, устанавливаемого на индикаторный кран дизеля или специально подготовленный канал, соединяющий датчик с камерой сгорания (Рис. 2 ).
Рис. 2 Высокотемпературные датчики давления газа в цилиндре серии ДДГ, установленные на индикаторные краны всех цилиндров дизеля 16Д49 .
В состав комплекса может входить один переносной датчик давления газа или количество датчиков давления газа должно соответствовать числу цилиндров дизеля.
С одним переносным датчиком давления газа, измерения проводят последовательно устанавливая датчик на каждый цилиндр. Во время проведения измерений, для получения объективных данных, необходимо обеспечивать постоянную мощность дизеля. Если индицирование цилиндра занимает 1 минуту, то например 8-цилиндровый дизель будет проиндицирован за 8 минут. При этом, в течение всего времени, необходимо обеспечивать стабильность нагрузки.
Установка датчиков давления газа на все цилиндры дизеля одновременно является наиболее предпочтительной, так как дает объективную картину распределения мощности по цилиндрам независимо от меняющейся нагрузки и занимает всего несколько секунд.
Также необходимо учесть, что при регулировке дизеля, изменять настройки одного цилиндра для достижения оптимального варианта приходится последовательно несколько раз. При этом происходит не только изменение мощности в регулируемом цилиндре, но и перераспределение нагрузки между цилиндрами. После каждой итерации (а их может быть и 10-20) требуется проведение индицирования, и время, потраченное на индицирование 1 датчиком (8 минут для 8-цилиндрового дизеля умноженных на 10-20 итераций) существенно отличается от нескольких секунд умноженных на 10-20 итераций, при индицировании всех цилиндров одновременно.
На рис. 3 показаны индикаторные диаграммы с параметрами всех цилиндров судового дизеля 6NVD36 до регулировки. На дизеле были установлены одновременно датчики давления газа на все цилиндры. Судно было привязано к причальной стенке. Дизель кратковременно запускали на долевой мощности. Нескольких секунд хватало на индицирование всех цилиндров.
Рис. 3 Индикаторные диаграммы всех цилиндров дизеля до регулировки.
Рис. 4 Индикаторные диаграммы всех цилиндров дизеля после регулировки.
На рис. 4 показаны индикаторные диаграммы и их характеристики всех цилиндров дизеля 6NVD36 после регулировки. Из архивных протоколов видно, что регулировку провели за 1 час и дизель запускали 8 раз.
Нагрузка цилиндра зависит от давления конца сжатия, количества топлива, подаваемого топливным насосом за один цикл, угла опережения подачи топлива и качества распыливания топлива форсункой.
Каждая из этих характеристик находит свое отражение в форме и характерных точках индикаторной диаграммы.
При проведении регулировки для достижения оптимального варианта приходиться последовательно изменять настройки каждого цилиндра несколько раз. Каждое изменение любой настройки регистрируется комплексом, что позволяет точно определять, какие характеристики и на какую величину необходимо менять в каждом цилиндре.
Ниже приведены индикаторные диаграммы с характерными неисправностями.
Рис. 5 Отключена или отсутствует подача топлива – диаграмма давления сжатия.
Рис. 6 Уменьшение общего угла опережения подачи топлива во всех цилиндрах.
Рис. 7 Влияние угла опережения подачи топлива на вид диаграммы: поздний угол подачи топлива – красная диаграмма и нормальный угол – зеленая.
Рис. 8 Незначительное изменение угла опережения подачи топлива.
Рис. 9 Индикаторные диаграммы одного цилиндра при разных цикловых подачах. С увеличением цикловой подачи диаграмма расширяется.
Рис. 10 Индикаторные диаграммы 6 цилиндрового дизеля на номинальной нагрузке. Виден небольшой разброс процессов сгорания.
Топливовоздушная смесь
Удельный расход топлива в значительной степени зависит от соотношения воздух/топливо (см. рис. «Влияние коэффициента избытка воздуха на удельный расход топлива и неравномерную работу двигателя при постоянной эффективной мощности» ). Для обеспечения действительно полного сгорания топлива требуется избыточное количество воздуха и, следовательно, как можно более низкий расход топлива. Однако здесь имеют место ограничения, зависящие от воспламеняемости и доступного времени сгорания смеси.
Также состав смеси влияет на эффективность снижения выбросов токсичных веществ с отработавшими газами. В настоящее время с этой целью используется трехкомпонентный каталитический нейтрализатор, который действует с максимальной производительностью при стехиометрическом соотношении воздух/топливо. Это может значительно снизить вероятность повреждения компонентов системы очистки отработавших газов. Поэтому современные двигатели, когда это позволяют условия работы, работают при стехиометрическом составе смеси.
Для определенных условий работы двигателя требуется адаптация состава смеси. Так, изменение состава смеси требуется при пуске холодного двигателя. Отсюда следует, что системы смесеобразования должны обеспечивать работу двигателя в различных режимах.
Конвертация в другие единицы
В англо-американской системе измерения удельный расход топлива двигателей внутреннего сгорания, которые передают мощность на вал, называется удельным расходом топлива при торможении (сокращенно: BSFC) и указывается в фунтах / (л.с. · ч). В более старой немецкоязычной литературе также указывается расход топлива в граммах на л.с. · ч (г / л.с. · ч).
Таблица преобразования
фунт / (л.с. ч) | г / кВтч | г / ПШ | |
---|---|---|---|
1 г / кВтч = | 0,001644 | — | 0,73549875 |
1 фунт / (л.с. * ч) = | — | 608,277 | 447,387258 |
1 г / ПШ = | 0,0022352 | 1,3596216 | — |
В англо-американском языке десятичная точка должна быть заменена десятичной точкой.
От редакции
Что вынудило нас раскатать тут целый ГОСТ? Увы, но простейший визит на один из постов на въезде в Алматы выявил нарушения в работе экологов: несоблюдение правил проведения замеров и отсутствие того же термометра — в минусовые температуры выхлоп дизеля не измеряют, а наши стражи экологии, невзирая на январские морозы, суют дымомеры всем подряд. Всё это напрямую влияет на показания, а значит, и штрафы могли и могут выписываться незаконно, а с 2013 по 2015 год их оформили порядка 100 тысяч. И это только официальные данные. Никто из редакции не утверждает, что все автомобилисты Алматы, а также приезжие, ездят на машинах, излучающих здоровье. Нет. Однако из-за нарушения методики и исправные машины признаются неисправными.
Вот и выходит, что защитить водителя от такого развода может только знание целого ГОСТа. Тем более что сами полицейские на момент нашего посещения их поста о существующем документе не знали или просто не хотели знать, ведь без правил всё так просто. «Жми!… О-о-о, да у вас нормы превышены! Оформляем!»
Отдельно мы подготовили компактную инструкцию, позволяющую не забыть об основных условиях и стандартах, при которых должны проверять выхлоп дизеля. Можно, конечно, возить с собой объёмные тексты ГОСТов, но мы постарались изложить всё кратко, основываясь на этих же стандартах.