Что такое тепловой двигатель какие виды тепловых двигателей бывают
Тепловые двигатели
Тепловой двигатель – это устройство, преобразующее тепловую энергию в механическую работу.
Иногда дается такое определение:
Тепловой двигатель преобразует внутреннюю энергию рабочего тела в механическую.
Итак, для теплового двигателя необходимо рабочее тело (газ или пар), нагреватель. Кроме того, в системе должна быть разница температур, чтобы рабочее тело, после совершения работы, могло отдать теплоту; то есть кроме нагревателя, нужен холодильник.
- Классификация тепловых двигателей
- Преобразование энергии в тепловых двигателях
- Адиабатный процесс и цикл Карно
- Теория и практика
Содержание
- 1 Теория
- 2 Циклы тепловых двигателей
- 3 Типы тепловых двигателей
- 3.1 Двигатель внешнего сгорания
- 3.1.1 Паровая машина
- 3.1.2 Паровая турбина
- 3.1.3 Двигатель Стирлинга
- 3.2 Двигатель внутреннего сгорания
- 3.2.1 Поршневой двигатель внутреннего сгорания
- 3.2.2 Газовая турбина
- 3.2.3 Реактивный двигатель
- 3.2.4 Другие типы
- 3.3 Твёрдотельные двигатели
- 3.4 Атмосфера и гидросфера Земли
- 3.1 Двигатель внешнего сгорания
- 4 Примечания
- 5 Ссылки
Обратимый круговой процесс
Работа агрегата оценивается, с этой целью принято КПД идеального теплового двигателя. Впервые такое понятие ввёл изобретатель, Карно, в двадцать четвёртом году девятнадцатого века. Главный принцип цикла, обратимость. Согласно рассуждениям инженера, повторяемость процесса будет обеспечена, когда расширение рабочего вещества при нагреве будет сменяться сжатием этой субстанции до начального состояния при охлаждении. Обмен теплом с атмосферой цикле не учитывается, его нет.
Никола Леонард Сади Карно (1796 – 1832 года жизни):
Идеальный тепловой двигатель конструктивно содержит устройство нагрева с температурой «Т нагревателя», устройство охлаждения с температурой «Т холодильника» и вещество, которое, то сжимается, то расширяется.
Рассмотрим стадии цикла:
- Расширение с температурой = const (А – Б).
Начальная стадия процесса, температура вещества равно значению «Т нагревателя». Происходит соприкосновение с устройством нагрева, веществу передалось тепло от «Q нагревателя», и оно увеличивается в объёме.
Стадии цикла Карно:
- Увеличиваясь в объёме, вещество ни отдало, ни получило тепла (Б – В).
Тело, выполняющее силовое воздействие не соприкасается с устройством нагрева, однако продолжает увеличиваться в объёме, не передавая части теплового носителя атмосфере. Температура вещества выравнивается с температурой установки охлаждения.
- Сдавливание с постоянной температурой (В – Г).
Вещество с показателем температуры, равным температуре установки охлаждения «Т холодильника», контактирует с охладителем и уменьшается в объёме, температура не меняется. Но само тело отдаёт часть температуры холодильнику, «Q холодильника».
- Сдавливание с нарастанием силы и температуры, без теплообмена (Г – А).
Вещество уже не контактирует с холодильником, сжимается без отдачи температуры атмосфере. Температура вещества приравнивается к температуре нагревательного элемента.
Изотермические процессы протекают с постоянной температурой, тогда как адиабатические процессы происходят без теплообмена, следовательно, энтропия в процессах Карно сохраняется.
КПД, соответствующий реальным агрегатам ниже эталонного коэффициента. Идеальный коэффициент используют как эталон, когда определяют, каков резерв разработанной или усовершенствованной силовой установки.
Какие бывают тепловые двигатели?
Тепловые двигатели – это машины, которые производят механическую работу благодаря обмену тепла с другими внешними телами. Нагревание происходит обычно благодаря тому, что сгорает топливо, в результате чего получается достаточная температура на нагревательном элементе. В данном случае работа осуществляется благодаря использованию энергии смеси кислорода и топлива. Есть различные виды тепловых двигателей, работа которых основана на нагреве с помощью Солнца, разницы в температурах воды. Однако такие машины не получили достаточного распространения и значения. В эксплуатации сейчас часто можно обнаружить двигатели, использующие выделяющуюся тепловую энергию расщепления атомных ядер в реакторе.
Вариант №2
В давние времена люди пытались использовать энергию топлива и это все для того чтобы вырабатывалась механическая энергия. А спустя некоторое время появились первые тепловые двигатели. Постепенно его преобразовывали и пытались сделать что-то новое. При помощи такого двигателя сначала получается газ, а потом и пар. Сначала они проходят и проделывают очень много работы, а потом происходит процесс охлаждения.
Немного попозже люди научились вырабатывать энергию. И делали они это при помощи разных способов. И это были ветровые мельницы.
Если рассматривать тепловые двигатели, то к ним можно отнести не только паровую машину, но еще и двигатель внутреннего сгорания, а также паровую или газовую турбину. Данные тепловые двигатели обычно заправляются при помощи жидкого или твердого топлива, а также при помощи солнечной или атомной энергии.
На сегодняшний день существует огромное количество разных автомобилей. И они работают обычно на тепловом двигателе. Кроме этого они работают на жидком топливе. Двигатель может выдержать всего четыре года. Также на двигателе имеется четыре такта. Именно поэтому он и называется четырехтактным. А вот для того чтобы увеличить мощность двигателя нужно поставить туда либо четыре цилиндра, а в некоторых случаях устанавливается восемь цилиндров. А вот более мощные двигатели обычно устанавливаются либо на теплоходах или тепловозах.
Кроме этого на сегодняшний день активно применяются и тепловые двигатели. Обычно туда заливается пар или газ, а потом нагревается до высокой температуры. Потом газ начинает вращаться, и при этом здесь совсем не нужен поршень. Также здесь совсем не нужен ни шатун, ни коленчатый вал.
А вот для того чтобы увеличить мощность требуется всего лишь специальные диски. И каждый из них должен был прикреплен к общему валу. Обычно данные турбины можно применять на тепловых электростанциях или на кораблях.
Также к тепловым двигателям относятся воздушно-реактивный двигатель. Он работает при помощи окисления горючего вещества, и потом он превращается в кислород. Они бывают бескомпрессорными (двигатель, который работает без помощи каких-либо компрессоров) и компрессорными (они работают при помощи газовой турбины или поршня).
Кроме этого установлено и отрицательное влияние тепловой машины на окружающую среду и в этом воздействуют некоторые факторы. Когда топливо сжигается, то выделяется кислород, а это значит, что в окружающей среде кислород наоборот уменьшается. Также когда топливо сжигается, то атмосфера загрязняется.
И нужно обязательно сказать о том, что в атмосферу выделяется огромное количество азота, а также серы. А ведь это все очень пагубно влияют на человека.
Также вредные вещества выбрасывает и автомобиль. А вот для того чтобы этого не происходило можно заменить бензиновый двигатель на обычное топливо. Самое главное чтобы в топливо не добавлялся свинец.
Имеются еще и паросиловые станции. Работают они при помощи пара. Обычно это паровой пар. Конечно, имеются еще и другие машины, которые работают при помощи ртути.
8, 10 класс окружающий мир
Теория [ | ]
Работа, совершаемая двигателем, равна:
A = Q H − | Q X | , где:
- Q H
> — количество теплоты, полученное от нагревателя,
- Q X
> — количество теплоты, отданное охладителю.
Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя: η = | Q H | − | Q X | | Q H | = 1 − | Q X | | Q H |
Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя( T H ) и холодильника( T X
):
η K = T H − T X T H = 1 − T X T H
Однако, смотря по устройству двигателя, его теоретический КПД может быть меньше такого для цикла Карно. Так, для наиболее распространённого двигателя Отто, работающего по циклу Отто, теоретический КПД циклла составляет:
η = 1 − 1 n k − 1 , где:
- n = V 1 / V 2
/V_<2>> — степень сжатия,
- k
— показатель адиабаты.
Так называемый индикаторный КПД меньше теоретического, что показывает несовершенство осуществляемого цикла (отличие индикаторной диаграммы от теоретической ввиду потерь теплоты в стенки, отличного от нуля времени нагрева газа, наполнения и очистки цилиндра).
В свою очередь, эффективный КПД (учитывающий все потери, до выходного вала) ещё меньше на сумму механических потерь и потерь на привод систем двигателя (масляный насос, системы газораспределения, охлаждения и другие — в зависимости от устройства).
Рабочее тело теплового двигателя
Для совершения полезной работы необходимо создать движение под действием силы. Такое движение в тепловом двигателе совершается при расширении порции газа, называемого рабочим телом. Во всех тепловых двигателях рабочее тело получает тепло от Нагревателя, затем расширяется, совершая работу. При расширении оно охлаждается и отдает тепло Холодильнику.
Для всех применяемых тепловых двигателей Холодильником является окружающая среда. Нагреватели же зависят от типа двигателя. Для парового двигателя Нагревателем является топка парового котла. Для двигателя внутреннего сгорания (ДВС) Нагревателем является само рабочее тело – горючая газовая смесь.
Рис. 2. Схема теплового двигателя.